Monitoring procedure for parameter change in causal time series

نویسندگان

  • Jean-Marc Bardet
  • William Kengne
چکیده

We propose a new sequential procedure to detect change in the parameters of a process X = (Xt)t∈Z belonging to a large class of causal models (such as AR(∞), ARCH(∞), TARCH(∞), ARMAGARCH processes). The procedure is based on a difference between the historical parameter estimator and the updated parameter estimator, where both these estimators are based on a quasi-likelihood of the model. Unlike classical recursive fluctuation test, the updated estimator is computed without the historical observations. The asymptotic behavior of the test is studied and the consistency in power as well as an upper bound of the detection delay are obtained. Some simulation results are reported with comparisons to some other existing procedures exhibiting the accuracy of our new procedure. The procedure is also applied to the daily closing values of the Nikkei 225, S&P 500 and FTSE 100 stock index. We show in this real-data applications how the procedure can be used to solve off-line multiple breaks detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring Financial Processes with ARMA-GARCH Model Based on Shewhart Control Chart (Case Study: Tehran Stock Exchange)

Financial surveillance is an interesting area after financial crisis in recent years. In this subject, important financial indices are monitored using control charts. Control chart is a powerful instrument for detecting assignable causes which is considerably developed in industrial and service environments. In this paper, a monitoring procedure based on Shewhart control chart is proposed to mo...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

The effect of parameter estimation on Phase II control chart performance in monitoring financial GARCH processes with contaminated data

The application of control charts for monitoring financial processes has received a greater focus after recent global crisis. The Generelized AutoRegressive Conditional Heteroskedasticity (GARCH) time series model is widely applied for modelling financial processes. Therefore, traditional Shewhart control chart is developed to monitor GARCH processes. There are some difficulties in financial su...

متن کامل

Testing for parameter constancy in general causal time series models

We consider a process X = (Xt)t∈Z belonging to a large class of causal models including AR(∞), ARCH(∞), TARCH(∞),... models. We assume that the model depends on a parameter θ0 ∈ IR and consider the problem of testing for change in the parameter. Two statistics Q̂ (1) n and Q̂ (2) n are constructed using quasi-likelihood estimator (QLME) of the parameter. Under the null hypothesis that there is no...

متن کامل

Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model

A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2014